

Superhydrophilic interfaces and short and medium chain solvo-surfactants

Romain VALENTIN, Zéphirin MOULOUNGUI

JOURNÉES CHEVREUL

PLANT CHEMISTRY AND LIPOCHEMISTRY

Maisons-Alfort (Ecole Vétérinaire) Tuesday 5th and Wednesday 6th June 2012

Objectives

Ways of synthesis of short and medium chain Monoglycerides and Glycerol carbonate esters

Physco-chemical properties

Intrinsic At interfaces Possiblities of formulations

Applicative properties

Emulsifying agents Solubilization Encapsulation Surface agents Anti-adhesion Anti-corrosion Cross barriers Gelation Properties Water retention Thickening agent **Application domains**

Paints Foods Cosmetics Pharmaceutics

Routes of Glycerol carbonate synthesis

• Catalytic carbonylation of glycerol by reaction of urea with glycerol

Atom Economy, CO₂ sequestration, No solvent, Direct Use

Synthesis of Glycerol 1-Monooleate by Condensation of Oleic Acid with Glycidol Catalyzed by Anion-Exchange Resin in Aqueous Organic Polymorphic System

surface

of the resin

w/o

Oleic Acid / Gly

H,C

CH, CH,

P. Resi

O/W

Me

Polymeric Resin (P. Resin)

CH, CH.

P. Resil

Oleic Acid

1-MGO Synthesis

Z. Mouloungui et al., Industrial & Engineering Chemistry Research 48(15): 6949-6956.

Synthesis of Glycerol Carbonate Esters

Acylation by acyl chlorides

OEHLENSCHLÄEGER J., 1979

 $H_2C = O$ $H_2C = O$ $H_2C = O$ $H_2C = OH$ Glycerol carbonate

Acylation by acidic anhydrides

DE 3804820 (1989) Dainippon Ink and Chemicals

Esterification by carboxylic acids

DE 3937116 (1991) Dainippon Ink and Chemicals

Transesterification by methyl esters

US 2979514 (1961) Rohm & Haas Company

Laboratoire de Chimie Agro-Industrielle

Glycerol carbonate esters

Laboratoire de Chimie Agro-Industrielle

Generic reaction systems/Microorganized systems

From Laboratory scale 250 mL

Continuous reactor (30-100 g/h)

To pre-pilote scale 25 L

Chemical structures of fatty bifunctional molecules

Polymorphism of pure molecules

• Effect of polar head on polymorphic behavior: GCEs are less sensitive to the cooling rate

Melting points

• Taken on the higher stable form from DSC experiments

MP of the β form MGs is higher than the more stable form observed with GCEs Blocked oxygens on GC lead to the decrease of MP.

Structuration of surfaces Glycerol monolaurate crystallization

Chimie Agro-Industrielle

The surfaces can by texturated by crystallization of molecules of high melting point

The roughness is of nanometer scale

domain of the capillarity

R. Valentin, et al. (2012). Journal of Colloid and Interface Science 365(1): 280-288.

Super-Water-Repellent Fractal Surfaces

de Chimie Agro-Industrielle

T. Onda,*,† S. Shibuichi,† N. Satoh,‡ and K. Tsujii†

Langmuir, Vol. 12, No. 9, 1996

Figure 1. Schematic illustration for $\cos \theta_f vs \cos \theta$ theoretically predicted.

Superhydrophobicity

Figure 2. SEM images of the fractal AKD surface: (a, top) top view, (b, bottom) cross section.

M. Ambrosi, Phys. Chem. Chem . Phys., 2004

A. Sein et al., J.Coll. Interf. Sci. 2002

How many water interact with polar head of GCEs?

Hydratation properties of GCEs

Detection of the amount of non-melting water by DSC analysis

Amount of water hardly bounded to the glycerol carbonate fatty acid esters

M. Ambrosi, Phys. Chem. Chem. Phys., 2004

Hydratation properties in GCEs coagels % of strongly bounded water

High **influence** of the the **chain length** on the hydratation of **glycerol carbonate esters coagel**

Mol of bounded water/GCE polar head

« freezed » water increase with chain length

C. Neuberg, J. Chem. Soc., Trans., 1916, 110, II, 555.

LCO Laboratoire de Chimie Agro-Industrielle

Interfacial Parameters

	CMC/CAC mmol/L	CMC/CAC mg/L	A Area/molecule (A ²)	γ cmc mN/m	СРР	$CPP = \frac{\mathbf{v}}{\mathbf{A} \times \mathbf{Lc}}$
MG-C7	1	204	25.6	35.3	0.8	V = 27.4 + 26.9 n _c
MG-C11:1	0.38	89.04	23	36.9	0.9	lc = 15 + 1265 n
MG-C12	0.29	79.46	31.1	24.1	0.7	
GCE-C7	1.13	259.9	38.7	44.4	0.5	SPHERIC >0.33
GCE-C8	0.41	100.04	34	33.3	0.6	
GCE-C9	0.25	64.5	60	35.5	0.3	DI3C-LIKE >0.3
	0.9	273.6	45	27.3	0.47	
C ₉ COE ₄	0.8	278.4	50	28.5	0.42	

→ Y. Zhu et *al.* J.Colloid Interface. Sci. **2007,** 312, (2), 397-404.

- Esters of glycerol carbonate are surface active molecules
- Self-assembling in water
- GCEs objects more rod-like
- MGs objects more disk-like

Water/octanol partition Coefficient

Polarity parameter determined by HPLC on C18 column

Polarity parameter calculated by Quantitative Structure Activity Relatioship

• Linearity of values with the number of carbon on the fatty

chain Influence of the fatty chain

• GCEs more hydrophobic than MGs

Effect of the polar Head

Surface Formulations

Self assembling on surfaces : Cu, S, SSt, PVC

Fatty acid esters	Surfaces undiluted coating	just coated	washed
		θ (%)	θ (°)
GM-C12"90"/GM-	Cu	12.5	26.9
C7"90" 50/50 (w/w)	S	9.1	11.7
	SSt	9.6	28.3
	PVC	6.0	29.4
GM-C12"90"/GM-	Cu	7.4	8.5
C11:1"90" 50/50	S	6.0	18.9
(w/w)	SSt	6.8	9.6
	PVC	7.4	28.3
GM-C12"90"/GCE-	Cu	24.7	36.1
C8"90" 50/50 (w/w)	S	24.3	29.1
	SSt	26.4	37.3
	PVC	32.2	39.1

R. Valentin, et al. (2012). Journal of Colloid and Interface Science **365(1): 280-288**

Water contact angle < 10°

Superhydrophilic surfaces

Superhydrophilicity of Surfaces

Hydrogel-like systems on surfaces = waterrepellency induced by superhydrophilicity

Biomimetism

Synergy between the melting properties and solvo-surfactant properties to obtain superhydrophilic surfaces

Structuration + texturation + surfactant activity + CA <10° = Superhydrophilicity

« The glands secrete hydrophilic substances that, in combination with the surface roughness, lead to superhydrophilicity. » (*Ruellia devosiana*)

K. Koch; W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **2009**, 367, (1893), 1487-1509.

- GCEs are new polymorphic molecules different from MGs
- Carbonation decreases melting points : 2 OH functions are blocked on GCEs versus MGs where 2 OH are involved in intra and intermolecular hydrogen bonds
- Carbonation deacreases the hydrophilic character of the polar head of surface-active GCEs
- Short chain and medium chain MGs and GCEs are solvosurfactants molecules
- Formulations of Monoglycerides and Glycerol carbonate esters on surfaces induce superhydrophilicity by biomimetism

Perspectives

Better understanding of polymorphic behavior of MGs and GCEs with short and medium chain : crystallographic studies

- New uses for theses self-assembled biomolecules
- Protecting / stabilization / vehiculation

Water and protic molecules transport

Thank you for your attention !

Dr. Romain VALENTIN Research Associate INRA romain.valentin@ensiacet.fr Dr. Zéphirin MOULOUNGUI Research Director INRA zephirin.mouloungui@ensiacet.fr

