

VEGETABLE-BASED BUILDING BLOCKS FOR THE SYNTHESIS OF RENEWABLE POLYURETHANES AND POLYESTERS

Lise Maisonneuve,^a Arvind More,^a

Eric Cloutet,^a Benoit Gadenne,^b Carine Alfos,^b and Henri Cramail ^a

^{*a*} Laboratoire de Chimie des Polymères Organiques, Bordeaux, France ^b Institut des corps gras (ITERG), Pessac France

SFEL 2012

A greener future for polymeric materials

renewable resources compositing netric tonnes starch and oil 150,000 Europe applications & technology siamylogoid 1983 1986 1989 1992 980 Year 1980 1900 1920 1940 1960 Source: European Bioplastics | University of Applied Sciences and Arts Hanover (Status May 2011)

Source : European bioplastics/ Probip 2009

Bio-based raw materials

Bifunctional building blocks for polyurethanes

Fats & Oils expertise

Synthetic route to the fatty-based diols

ITERG

Particular case of diamide diol

Structure of bio-based diols

ITERG **Bio-based** well-defined difunctional building-blocks **Bio-based** Thermoplastic polyurethanes & polyesters

Bifunctional building blocks for polyurethanes

Fats & Oils expertise

Synthetic route to the poly(amide urethane)

Fats & Oils expertise

Amorphous polyurethanes

Semi-crystalline polyurethanes

SEFL - June 2012 - C. Alfos (ITERG)

11

Semi-crystalline polyurethanes

Polyurethanes Fats & Oils expertise Mechanical properties via tensile experiments

		Young's modulus	Ultimate strength	Maximum strain
	Samples	(MPa)	(MPa)	(%)
Μ	PU-dE-2	287 ± 35	17.4 ± 2.4	266 ± 24
Ţ	PU-EA-2	314 ± 33	23.2 ± 1.4	269 ± 26
	PU-dA-1	770 ± 68	58.1 ± 3	41 ± 2
	PU-dA-2	775 ± 51	48.3 ± 3	44 ± 13

Tensile experiments : Tensile stress versus strain curves

2. Poly (ester/amide urethane)s Thermal stability

TGA thermograms – N_2 , 10°C.min⁻¹

Typical multiple step degradations behavior
Urethane functions, thiocarbon chains, ester and amide linkages
Mostly T_{5%} > 280°C

Our strategy to more robust fatty-acid based materials

Fats & Oils expertise

ITERG

Polyesters using diol precursors

Our strategy to more robust fatty-acid based materials

Fats & Oils expertise

ITERG

Entry	Monomer	ester:amide ratio	Mn (g/mol)	Mw (g/mol)	Mw/Mn
PE 1	UndPdE	1:0	18 400	35 000	1.9
PEA 1	UndPEA	3:1	17 500	33 100	1.9
PEA 2	UndPmA	2:1	10 902	19 500	1.8
PEA 3	UndBdA	1:1	19 300	29 000	1.5

SEC in THF, PS calibration - For PEA3, trifluoroacetic anhydride was used to dissolve the polymer using standard method

Entry	Young's Modulus (MPa)	Ultimate Strength (MPa)	Strain at break (%)	
PE1	93.0 ± 10.4	2.9 ± 0.8	$\textbf{4.1} \pm \textbf{1.3}$	
PEA1	$\textbf{82.7} \pm \textbf{15.2}$	5.4 ± 1.2	$\textbf{11.1} \pm \textbf{2.4}$	
PEA2	131.5 ± 17.5	3.5 ± 0.3	$\textbf{3.4}\pm\textbf{0.7}$	
PEA3	$\textbf{363.0} \pm \textbf{89.1}$	10.0 ± 3.5	3.3 ± 0.7	

Conclusion

Acknowledgments

