Phospholipase A2, the neurotrophin pigment epithelial derived factor and lipid mediators regulate corneal nerve regeneration

Haydee BAZAN

Department of Ophthalmology and Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA

The cornea is densely innervated and corneal nerves play a pivotal role in maintaining a healthy ocular surface. Many diseases as well as surgical procedures that affect the cornea can compromise corneal innervation and produce a decrease in tear secretion and epithelial wound healing.

Our previous studies had shown that treatment of rabbit corneas with pigment epitheliumderived factor (PEDF) + docosahexaenoic acid (DHA) increase neuroprotectin D1 (NPD1) synthesis and promote nerve regeneration after experimental surgery. Synthesis of NPD1 occurs after stimulation of phospholipase A2 (PLA2)-15-lipoxygenease-1 (15-LOX-1).

We now show that a PEDF-receptor (PEDF-R) that shares strong homology with members of the Ca-independent PLA2 (iPLA2) is expressed in the plasma membrane of corneal epithelial cells. To investigate the action of PEDF on the release of DHA, rabbit corneas were incubated with 40ng/ml of PEDF for different times, and lipids from epithelia and media were extracted and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). After 5 minutes of incubation, there was an increase in the release of DHA and in the synthesis of 15-hydroxyeicosatetraenoic acid (15-HETE), a product of the 15-LOX. In the presence of the iPLA2 inhibitor bromoenol lactone (BEL, 50μ M), there was inhibition of DHA release and 15-HETE synthesis. Our results show that the mechanism of corneal nerve regeneration induced by PEDF requires the activation of a PEDF-R with activity of iPLA2 and the release of DHA to synthetize NPD1.

(Supported by NIH grant EY019465)