

Fatty acid assemblies: from bulk to interfaces

<u>Anne-Laure Fameau^{1,2}</u>, Fabrice Cousin¹, François Boué¹, Bruno Novales², and Jean-Paul Douliez²

> ¹Laboratoire Léon Brillouin , CEA Saclay, 91191 Gif-Sur-Yvette, France ²Biopolymères Interactions et Assemblages, INRA Nantes, 44316 Nantes, France

Context

Surfactants

Context

Green chemistry

Context

Green chemistry

Hydroxylated fatty acids

Scientific challenges

FA chain long \rightarrow insolubles in water How to disperse them?

Klein R., Touraud D., & Kunz W., (2008) Green Chemistry 10, 433-435. Zana R. (2004) Langmuir, 20, 5666-5668.

A System with a hierarchical structure

Douliez J.P., Gaillard C., Navailles L., & Nallet F., (2006) Langmuir, 22, 2942-2945.

Douliez J.P., Gaillard C., Navailles L., & Nallet F., (2006) Langmuir, 22, 2942-2945.

Tubes diameter is tuned by the temperature

Douliez J.P., Pontoire B., & Gaillard C., (2006) ChemPhysChem, 7, 2071-2073. Fameau A-L., *et al.* (2010) Journal of Colloid and Interface Science, 341, 38-47. Fameau A-L., *et al.* (2011) Journal of Physical Chemistry B, 29, 9033-9039.

Thesis project

- Specific properties of tubes in bulk?
- Confinement of tubes at interface?
- Structure of tubes into the foam ?
- Is it possible to obtain thermo-responsive foams?

Outline

Presentation of the system in bulk

Structure of tubes at the air/water interface?

interface

Foaming properties of tubes

Outline

Presentation of the system in bulk

Structure of tubes at the air/water interface?

interface

Foaming properties of tubes

Characterization of the local structure by SANS

Characterization of the local structure by SANS

Link : structure at the local scale and at the microscopic scale

Outline

Presentation of the system in bulk

Structure of tubes at the air/water interface?

interface

Foaming properties of tubes

Adsorption of tubes at the air/water interface?

Neutron Reflectivity reflectivity air D_2O \bigcirc \bigcirc 0 0 10⁻⁸ Experimental data air [≈300 Å D_2O RO^4 10⁻⁹ Ł air $2\pi/\Delta Q$ Å 10⁻¹⁰ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 D_2O Q (Å⁻¹)

Simple models to explain the results ?

Simple models to explain the results ?

Simple models to explain the results ?

Model of adsorbed tubes at the interface

Model of adsorbed tubes at the interface

Model of adsorbed tubes at the interface

Adsorption of tubes at the air/water interface!

Comparison structure in bulk and at the interface

Same evolution of the interlayer spacing

Comparison structure in bulk and at the interface

Structure at the interface temperature tunable!

Fameau A.L., Douliez J.P., Boué F., Ott F. & Cousin F., (2011) Journal of colloid and Interface Science, 362, 397-405.

Outline

bulk

2222222222222

Presentation of the system in bulk

Structure of tubes at the air/water interface?

interface

Foaming properties of tubes

What is a foam?

Mechanisms of foam destabilization

drainage

Mechanisms of foam destabilization

drainage

Mechanisms of foam destabilization

drainage

coalescence

Concentration: 10 g/L Flow rate =35 mL/cm³

Optimal foamability and very stable foam !

Ultrastable foam!

Structure of the foam at 25°C

bulk

Tubes are present in the foam

Foam structure: Plateau borders

stock solution

Foam structure: interfacial film

Foam structure: interfacial film

Foam structure: air/water interface

Foam structure: air/water interface

Yim K.S., Rahaï B., & Fuller G.G., (2002) Langmuir, 17, 6597-6601.

Overview: foam structure at 25°C

Drainage reduction, coalescence and coarsening are blocked!

Tubes are responsible for the foam stability.

Evolution at 60°C

12 hydroxystearic acid

6 amino 1 hexanol

Very fast destabilisation!

Foam structure at 70°C: Plateau borders

12 hydroxystearic acid

2 amino 1 ethanol

Tubes melt into micelles in situ in the foam

Overview: T>Tfusion

Very fast destabilisation because of the tubes/micelles transition!

Evolution during temperature cycles

Fameau A.L., et al. (2011), Angewandte Chemie International Edition, 50, 8264-8269.

Conclusions

Conclusions : structure of tubes at the interface?

Structural transitions at the interface are reversible!

Interface easily temperature tuneable!

Conclusions : Foaming properties of tubes?

Stable

Unstable

Acknowledgment

- ➢Jean-Paul Douliez & Bruno Novales
- ➢ Fabrice Cousin & François Boué
- ➢ Bérénice Houinsou Houssou & Cédric Gaillard
- ➢ Frédéric Nallet & Laurence Navailles
- >Arnaud Saint Jalmes & Janine Emile
- ➢Dominique Langevin, Wiebke Drenckhan, Emmanuelle Rio & Anniina Salonen LPS

