

INVEST_ ADD VALUE_ FEED_

CONFIDENTIAL

Agenda

- 1. Availability, composition and prices as first criterias for new molecule development
- 2. Value chain of Oleochemistry : Towards a new innovation complexity & more added value platform molecules
 - a. The first generation platform molecules : Fatty acid, fatty alcohol & fatty esters
 - **b.** The second generation platform molecules :
 - i. New development routes
 - ii. More added value products based on fatty acid & glycerol
 - iii. The 2nd generation molecule : a industrial reality
- 3. The Markets drivers
- 4. The Other factors of those platform molecules developments

2

Availability, composition and prices of vegetable oils : The first criterias

3

Availability of vegetable oil and fats

The worldwide production is approximately 180 millions of tonnes

« Only » 10% for chemical applications

Adapted from: Klaus Schumaker, Developments on the markets for grains, oilseeds and feedstuffs

Oleon Vegetable oils, available raw material all around Groupe Sofiprotéol the world

Palm oil export by country / region

The fatty acid composition, the first step

Acides gras	Туре	С	olza Tourn		Tournesol		a Coco F		alme Ri	
		0:0	érucique	classique	oléique		coprah	palmiste	palme	
caprylique	C8:0	-	-	-	-	-	6 – 10	2-5	-	-
caprique	C10:0	-	-	-	-	-	6 – 10	3-5	-	-
laurique	C12:0	-	-	-	-	-	39- 54	44-51	traces	-
myristique	C14:0	0 - 1	-	-	-	traces	15-23	15-17	1-2	-
palmitique	C16:0	1 - 5	3	5 – 7	4	8 – 13	6 – 11	7-10	43-46	0.5-1
stéarique	C18:0	0.5 – 2	1	4 – 6	5	2-5	1 – 4	2-3	4 – 6	0.5-1
oléique	C18:1	50-65	16	15 - 25	>(75) 80	17-26	4 – 11	11-18	37-41	2-6
ricinoléique	C18:1	-	-	-	-	-	-	-	-	85-95
linoléique	C18:2	15- 30	14	62 - 70	8 (< 10)	50-62	1-2	1-4	9 – 12	1-5
linolénique	C18:3	6 – 13	10	< 0.2	< 1	4 – 10	traces	traces	traces	0.5-1
eicosénoïque	C20:1	1-3	6	< 0.5	-	< 0.4	-	-	-	-
bethénique	C22:0	0.5	-	< 1	-	< 0.5	-	-	-	-
érucique	C22:1	0 – 5	> 45 (50)	-	-	-	-	-	-	-

Source : Karleskind 1992, F. Gunstone, The chemistry of oils and fats, 2004.

Price, a key for futur development

Prices are coming to be more stable to better select the main adapted outlet for new development

Value chain of Oleochemistry : Towards a new innovation complexity & more added value platform molecules

Value chain of the Oleochemistry

Innovation of substitution : different molecule structure compared to petrochemical ones but with same activities

The 1st oleochemistry generation is lead to innovation of substitution whereas the 2nd generation will lead to a more traditional innovation

BUT all innovation will continue to exist simultaneously

1st generation oleochemistry (1/3)

Trans-esterification (exemple : Biodiesel)

Hydrolysis : Production of fatty acid and glycerine

• Description

- Contineous process
 Oil + water at 250℃ under 20 to 60 Bars
- Production and market estimation
 - Production 2010 : nearly 6.8 Mn T
 - Main raw material source : Palm oil
 - Main Chain length fatty acids : C12, C14, C16

CONFIDENTIAL

1st generation oleochemistry (3/3)

Hydrogenation : Production of saturated fatty acid and fatty alcohol

Transformation

Hydrogenation at 250-300℃ under 200-300 bars Possible reduction of unsaturation with speicla catalyst

- **Products**
 - Fractions C8-11, C12-14, C12-15, C16-18 (from coco, palmist, palm)
 - Price x 2 en 2010 (\$3/kg, Jan 2011 ICIS)
 - L High demand in renewable fatty alcohol
 - L Raw materials price increase

• Main outlet = Detergency

	2004	2010 ⁽¹⁾
Worldwide production (10 ⁶ t)	2.2	3.1
Petrochemical based	40%	27%
Vegetable based	60%	73%

INVEST_ ADD VALUE_ FEED_

Groupe Sofiprotéol

The 2nd generation Fatty acid chemistry (1/3)

Epoxydation as a source of new reactive oleochemicals

- Transformation
 - Organic catalyst : formic or acetic acid
 - H2O2
 - Temperature : 60 to 80℃
 - Atmospheric pressure
- Products
 - Epoxidized vegetable oil
 - Epoxidized esters
 - Hydroxylated esters & vegetable oils
- Main outlet = Plasticizers

The 2nd generation fatty acid chemistry (2/3)

Groupe Sofiprotéol

NOVANCE

oleon

Fatty acid, a platform molecule

An access to new builling blocks (few exemples below)

The 2nd generation glycerol chemistry (2/3)

Glycerol, a platform molecule

An access to new builling blocks through different routes

The 2nd generation glycerol chemistry (3/3)

Figure 8.5 METABOLIC PATHWAYS OF GLYCEROL METABOLISM

A source for easy way access to multi-step chemistry

The 2nd generation oleochemistry as a industrial and market reality (1/2)

Réaction	Produit principal	Applications	Commentaires	
Reformation	Gaz de synthèse CO, H ₂	Dérivés d'une réaction de Fischer-Tropsch	Bon ratio CO/H ₂ pour obtenir du méthanol.	
	Acroléine	Nombreux dérivés polymères (peintures et résines acryliques, fibres	Travaux d' Arkema de production d'acide acrylique via l'acroléine.	
Déshydratation	Ac <u>ide acryliq</u> ue	textiles, résines ABS), détergents, etc.	Des procédés émergents d'obtention directe d'acide acrylique et d'acrylonitrile à partir du glycérol.	
	Acrylonitrile	Importants marchés.	L'acide acrylique peut être obtenu également par fermentation du glucose (OPX aux USA). Cargill et Novozymes mènent un projet où le 3-HPA est un intermédiaire.	
Oxydation	Acide glycérique	Polymères, etc.	Encore au stade de recherche.	
ou fermentation	Dihvdroxvacétone	Cosmétique : agent autobronzant.	Petits marchés. Produit par ARD par fermentation du glycérol.	

The 2nd generation oleochemistry as a industrial and market reality (1/2)

Propylène alycol Emulsifiant alimentaire. Productions à partir de glycérol par ADM (unité de 100 Kt), + projets MPG, 1,2 propanediol solvant, humectant. Cargill, Virent, Dow, Huntsman ?? Dégivrant, liquides de HO refroidissement, fibres Projets par fermentation ? OH polvesters. Met Ex développe un procédé par Hydrogénolyse Importants marchés. fermentation. De glucose ou de ou fermentation glycérol ? Met Ex dispose d'un procédé au 1.3 propanediol Composant de polyesters (1.3 PDO) pour fibres, films et stade pilote de production du 1.3 PDO à partir de glycérol. revêtements. HO OH DuPont / Tate & Lvle produisent Important marché. du 1.3 PDO à partir de glucose. Deux procédés au point mais coûts Carbonate de glycérol Emollient (cosmétique). Potentiel pour produire de revient encore élevés. HO des polycarbonates. 0 Acteurs : Novance et Huntsman Carboxylation 4 Glycidol Polyglicidol, utilisable dans Le glycidol peut être produit à partir les résines époxy ou les du carbonate de alvcérol ou de polyuréthanes. l'épichlorhydrine. OH Polyglycérols et leurs Emulsifiants cosmétiques Nombreuses autres applications et agroalimentaires. potentielles : nouveaux polymères. esters Estérification. transestérification Tertiobutyl éther Additifs de carburants Pas encore de développement concurrents du MTBE et industriel. - tBu-O' O-tBu Ethérification de l'ETBE. O-tBu Epichlorhydrine Unité de 10 000 t de Solvav Résines époxy, etc. opérationnelle en France. Chlorination Construction d'une unité de 100 Kt CH2CI en Thaïlande.

The Markets Drivers

24

High markets needs as a good perspective

(kT)	2005	2015	2030
Organic intermediates	~0	4 500	11 250
Surfactants	110	184	205
Biolubricants	1	95	145
Biosolvents	9	46	84
Pigments, inks and coating	29	109	198
Biopolymers	10	2 334	4 623

• Source: Marché actuel des bioproduits énergétiques et industriels & évolutions prévisibles à échéance 2015/2030. ALCIMED 2007

• Données basées sur un scénario qui parie sur un fort développement des bioproduits reposant sur une forte augmentation du prix du baril de pétrole, une pression sociétale s'exprimant pour les bioproduits et une mobilisation forte de la recherche en faveur des bioproduits.

Polymers, the largest outlet for renewable building blocks (1/3)

What are the expectation for oleochemistry ?

Plastic worldwide production245 Mn T (2010)LBioplastics capacity0.72 Mn T (0.3%)

Study ADEME/ALCIMED January 2011

Résines	Capacités 2010 (ktpa)	Pourcentage de la capacité totale	Capacités 2013 (ktpa)	Pourcentage de la capacité totale	Taux de croissance
PE/PVC	200	28%	660	42%	230%
Cellulose	25	3%	25	2%	0%
PA	62	9%	62	4%	0%
Amidon	298	41%	423	26%	42%
PLA	75	10%	232,5	14%	210%
PHA	43	6%	181	11%	321%
PUR	20	3%	20	1%	0%
SOMME	723	100%	1603,5	100%	122%

____26

Polymers, the largest outlet for renewable building blocks (2/3)

> Biobased building blocks for PA, PU from castor, rapeseed and sunflow oil

Glycerol and derivatives for renewable polyols

	APPLICATION	SOURCE	
Polymers - Polymerized soyabean or castor oil - Linseed oil	Siccative oil Linoleum >50 kt	Soja, castor and linseed oil	
Polymers additives - Epoxidized oil - Soap (Ba/Cd, Ca/Zn)	Stabilizers, Plasticizers Lubricants 100 ktp	Soja and rapeseed oil Stearic acid	
Intermediates fors polymers - Diacids - Polyol esters & ethers	Polyamides, polyesters, Alkyds, Polyurethanes 100 ktr	Soja, castor, rapeseed oil Oleic acid	

29

Ester solvents can be excellent alternatives for petrochemical distillates

Biosurfactants

Matières premières végétales utilisées pour la synthèse des tensioactifs

Amphiphilic molecules : divided into

- an hydrophilic part (sugar, polyols, ...)
- a lipophilic part (fatty acid)

Application properties are linked to the chain length

- wetter (C8-C10)
- Solvent
- Detergency properties (C12-C16)
- Emsulifier an softer (C18-C22)=

Key factors for the biobased surfactant development :

- → Less toxicity for human and environment
- ➔ Higher biodegradability
- ➔ Special technical performance
 - polyfonctionnal (e.g. emuslifier + wetting + softing agent)

- Elimination of odour from petrochemical oils
- European market ~2.5 10⁶ t , With nearly 625 000 t of biobased surfactant (25%)
- 90% of surfactants on the market price : €1 to €1.5 /kg

Biolubricants

Performance

Oleic acid is the main fatty acid used in lubricants application (under esters structure) due to its best compromise between oxidation stability and behaviour at low temperature

> Triglyceride structure

- The vegetable oil used without transformation
 - Uses for applications under 70℃
 - Sensitive to oxidation and thermal degradation

ROCO

Triglycerides

Ester structure

- Monoalcohol esters
 - Use to adapt viscosity of lubricant (to be chosen according use temperature)
- Polyols esters :
 - Uses for high performance lubricants (till more than 120℃ in operation)
 - Very stable to oxidation and thermal degradation
- Biodegaradability and environmental issues

The Other factors of those platform molecules developments

The regulation, as an other opportunity of oleochemistry development

- REACH Regulation
- > Solvent regulation : limits of exposition to organic volatile solvents
 - Directive 2004/42/CE for coating applications
 - Directive 1999/13/EC on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations
- Construction regulation : ISO 15804 about sustainability of construction works and environmental product declarations
- National and european labellization : blue angel, NF Environment, White swan, Ecolabel
- Labelling : Renewable content based on C14 (ASTM D 6866) and complete atomic origin study
- > Environment, chemical industry and distribution pressure

The Life cycle analysis, as the judge for a solid and sustainable development

All products have environmental impacts

The main objective is to reduce the impact (carbone footprint and all other environmental impacts according ISO 14040 & 14044).

This issues is a key driver of oleochemistry development in parallel to petrochemical one

Main Conclusions

> The main key drivers for new platform molecules :

- Cost
- > The link between the raw material availability and the market potential
- Quality of the molecule
- Sustainability
- Regulation

> Markets needs :

- > Polymers
- Intermediates
- Solvents and coating
- Biolubricants

> Platform molecules :

- > The traditional ones will stay the starters : fatty acid and glycerine
- New ones will be developped with new routes (fermentation, catalyst development)

Diacid

> Monoacids or amino or hydroacids

