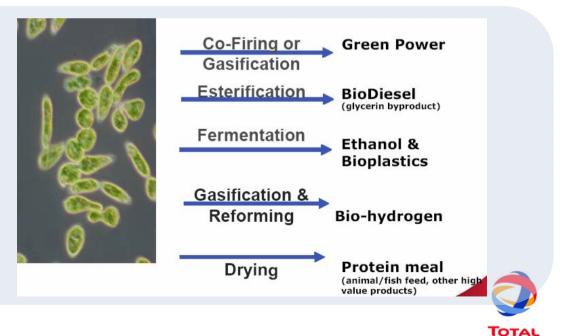
Micro-Algae

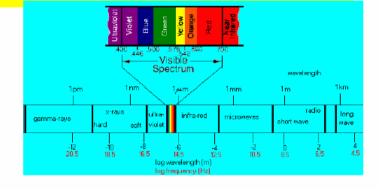
Forum Bioénergie ANR – PNRB

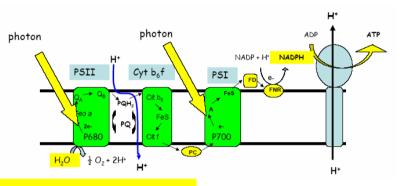
Paris – Feb 5 2009

Luc Haspeslagh


Références, date, lieu

The Algae Advantage


- Algae are the most diverse and versatile biomass source
- Algae biomass is rich in lipids (>30%)
- Algae do not displace any food crops
- Algae grow in variable climates on non arable land with non-potable water
- Algae can be used for biofuel and energy production in various ways and technologies

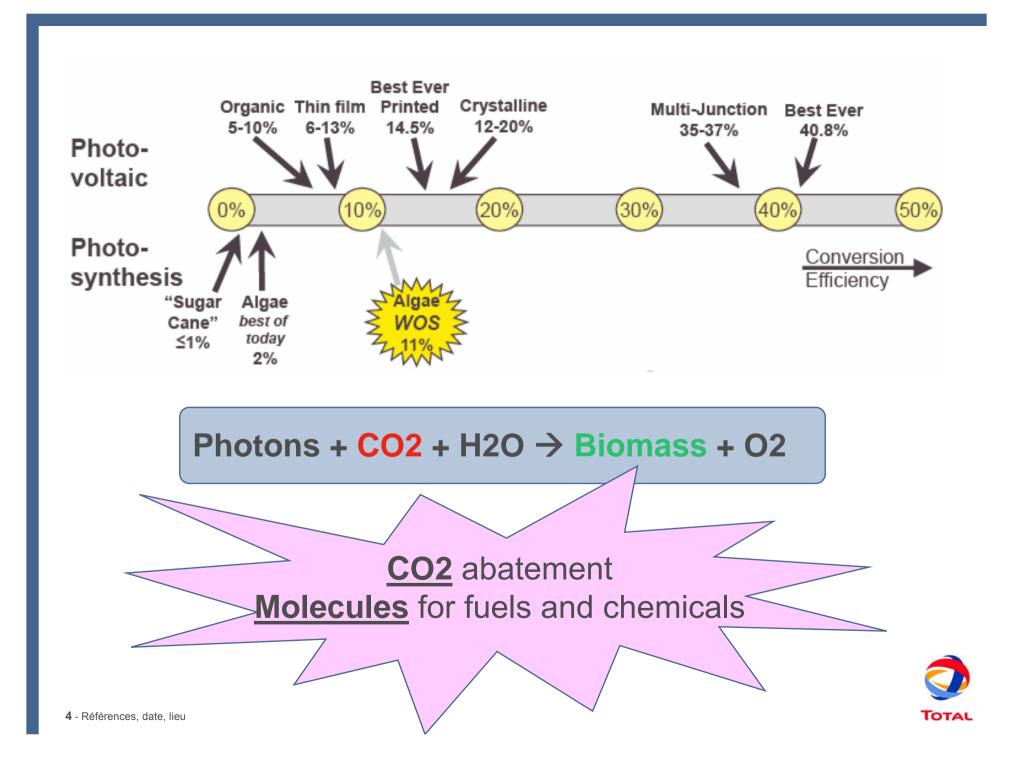

The Algae products

Dry biomass composition (Organic fraction)			
	Micro-Algae	Grass	
Saccharides	5 - 25%	35%	
Lipids	20 - 40%	3%	
Proteins	20 - 50%	25%	
Fibres (lignin)	-	37%	

Only 45% of sunlight has the suitable wavelength (400 to 700 nm) (PAR) to drive (oxygenic) photosynthesis

- 8 photons are required to fix one molecule of CO2
- one mole of fixed CO₂ is equivalent to 475 KJ (1/6 mole glucose)
- PAR photons have average energy content of 217 KJ per mole

Thus:


the maximum theoretical efficiency of conversion of PAR into the chemical energy of biomass is about 475 KJ / (217 x 8 KJ) = 27%

The maximum conversion efficiency of total solar light by photosynthesis is:

→ 27% × 45% = 12%

But: further reduction by reflection losses, light saturation effect....

Algae versus terrestrial biomass

<u>Algae</u>

Biomass production

Solar energy = 4000 Kcal/m²/day

- @ 12% → 280 T/ha/y (50% lipids)
- @ 2,5% → 70 T/ha/y (30% lipids)

Lipid production

- @ 12% and 50% lipids \rightarrow 155,000 l/ha/y
- @ 2,5% and 30% lipids \rightarrow 23,000 l/ha/y

Terrestrial biomass

- Biomass production
 - Sorghum: 50 T/ha/y
 - Energy Cane: 75 T/ha/y
- Lipid production
 - Palm oil: 6000 l/ha/y
 - Rapeseed: 1400 l/ha/y
 - Sunflower: 950 l/ha/y

Algae Biofuel Companies

A2BE Carbon Capture, LLC Algae Biofuels Algae Link Algenol (ethanol) Algodyne Algoil Aquaflow Bionomic Aquatic Energy Aurora BioFuels Inc. Bionavitas Blue Biofuels Blue Marble Energy Bodega Algae Cequesta Circle Biodiesel & Ethanol **Community Fuels** Diversified Energy Energy Farms Enhanced Biofuels & Technologies General Atomics

Global Green Solutions Green Star Greenfuel Technologies Corp GreenShift (ethanol) GS Cleantech HR Biopetroleum/Shell (Cellana) IGV Imperium Renewables Infinifuel Biodiesel Inventure Chemical Kai BioEnergy KAS Kent SeaTech Corp. Kwikpower LiveFuels. Inc. Mighty Algae Biofuels Oilfox **Organic Fuels** OriginOil PetroAlgae PetroSun

Phycal Revolution Biofuels Sapphire Energy Seambiotic SeaAg, Inc Solazyme, Inc. Solena Solix Biofuels, Inc. Sunrise Ridge Algae Sunx Energy Texas Clean Fuels Trident Exploration/Menova Valcent Products W2 Energy XL Renewables

Innovation for Our Energy Future

Тотац

National Renewable Energy Laboratory

Venture Capital Investments Heating Up

Venture Capital firms invested \$280M in advanced biofuels (Q1-Q2 2008); \$84 M for algae biomass; by comparison, \$4M invested for algae Q3 2007

- LiveFuels: raised \$10M Series A (2007)
- Aurora BioFuels: raises \$20M; open-pond, algae oil production
- Sapphire Energy: raises \$50M first round; additional \$50M raised
- Solazyme: raises \$45M; heterotrophic growth
- Algenol Biofuels: \$850M from Mexico's BioFields; ethanol from Cyanobacteria
- DOE: announces \$4.4M for six projects two algae projects (Montana State Univ. & Univ. Georgia)

Innovation for Our Energy Future

National Renewable Energy Laboratory

Development projects - Technologies

Ponds:

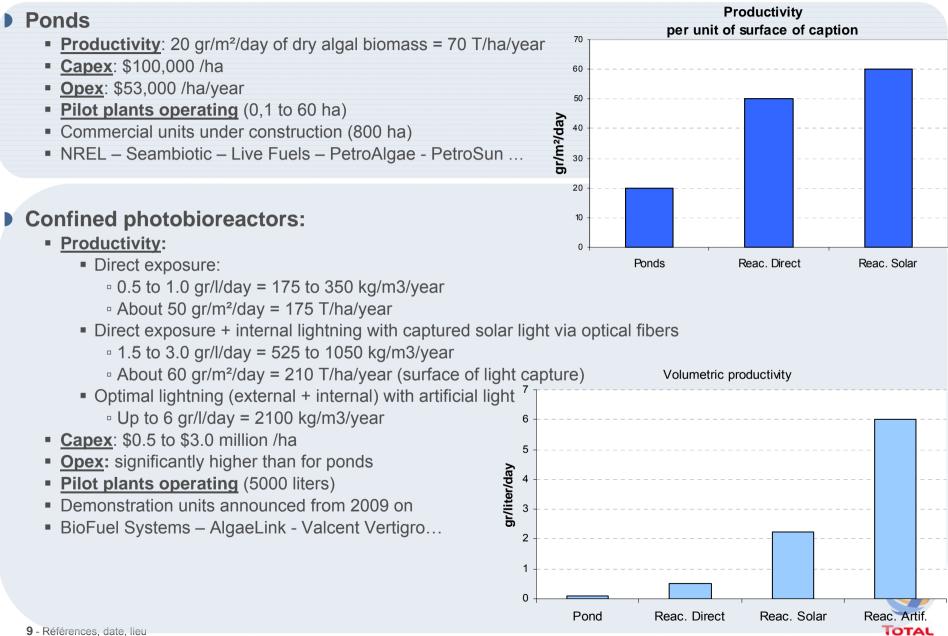
- Ocean based floating ponds: Sea Green (UK)
- Settling ponds of effluent management systems: Aquaflow Bionomic (New Zealand)
- Open pond raceway: Live Fuels (USA) Seambiotic (Israel) Rincon Renewables (USA)
- Closed ponds: Petrosun (USA) Green Star Products (USA)
- Plastic bags immerged in water ponds: Solix (USA)

Confined photobioreactors:

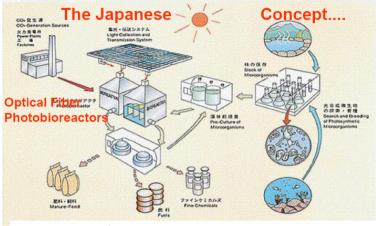
- Horizontal tubular: AlgaeLink (Neth.)
- Vertical tubular and plate in greenhouses: Novagreen (Ger)
- Vertical annular: BioFuel Systems (Spain)
- Horizontal and vertical thin film in greenhouses: GreenFuel Technologies (USA)
- Vertical plastic bags in greenhouses: Valcent Vertigro (USA)

Multistage:

- Modular closed and open systems including stress stage: Petro Algae (USA)
- ALDUO Technology: closed photobioreactor + open pond: HR Biopetroleum (USA)
- Shamash (France)

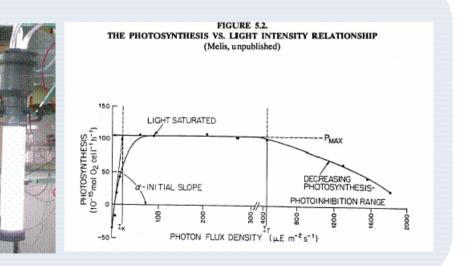

Heterotrophous algae:

Fermentation of sugars into algal biomass: Solazyme (USA) – Fermentalg (France)


State of the art

Confined photobioreactors...

- Higher CAPEX
- Higher OPEX
- Reactor fouling
-


Another approach to dluting light: collect sunlight and use outical filters to transfer to deep reactors

After spending \$hundreds millions gave up: "too expensive"

But...

- Better control of parameters influencing the algae culture (temperature, pH, salinity etc...)
- Better control of gas transfer
- Better protection from outside contamination
- Higher densities
- Higher productivities
- Reduction in evaporation of growth medium
- Confined containers → use of GMO...
- Overcome light saturation effect
-

Development projects – Business models

Predominant focus on end-product value and markets

- Algal paste:
 - Seambiotic Solix Valcent Vertigro
- Biocrude obtained after pyrolysis:
 - BioFuel Systems
- Algal oil + delipidated algal cake:
 - Algae Link Green Fuel Technologies Aurora Live Fuels
- Algal oil + ethanol from remaining biomass:
 - Petrosun Green Star Products
- Biodiesel Jet Fuel:
 - Aquaflow Bionomic Novagreen Rincon Renewables Sapphire Energy
- Algae oil for biofuels and other products + proteins for animal feed + carbohydrates for electricity and/or ethanol fermentation + residual biomass as solid fuel:
 - HR Biopetroleum Petro Algae

Very limited impact of CO2 mitigation credits

ΤΟΤΑΙ

Potential Business Models

Selected business model will determine to a large extend, R&D objectives, scope and partners

Large scale production of algal biomass

- Focus on maximizing biomass production or maximizing lipid production...
- Technology: Aquaculture in ponds.
- Unit of 100,000 ton dry biomass / year \rightarrow
 - State of the art (@ 20 gr/m²/day) = 1430 ha
 - Possible target (@ 50 gr/m²/day) = 570 ha
- Unit of 100,000 ton lipids / year \rightarrow
 - State of the art (@ 20 gr/m²/day / 30% lipids) = 4760 ha
 - Possible target (@ 50 gr/m²/day / 50% lipids) = 1145 ha

= 0.4% of TOTAL fuel production

<u>Competing technology</u>: agriculture of terrestrial biomass

12 - Références, date, lieu

Capture and valorization of CO2 emitted by existing plant

- Focus on maximizing CO2 conversion
- Technology: Highly efficient confined photobioreactors
- Unit for conversion of 100,000 ton CO2/year \rightarrow
 - State of the art (@ 2.25 gr/l/day) = 63 500 m3 240 ha light caption surface
 - Optimal. (@ 6 gr/l/day) = 23 800 m3
 Using artificial light
- Integrate with waste water treatment
 - = 0.2% of TOTAL CO2 emissions
- Competing technology: CCS

Oil Majors and Microalgae

• Large scale production of algal biomass:

Chevron

- R&D agreement with NREL to produce transportation fuels from algae – part of their fiveyear strategic biofuels alliance with NREL.
- Cooperation with Solazyme (heterotrophous algae technology) without further details

Shell

- Entered into JV with HR Biopetroleum to form Cellana (Hawaï)
- Hybrid technology using confined photobioreactors in first stage and open pond systems in second stage
- Business model aiming at maximum valorization of all components of biomass produced (oil – proteins – carbohydrates – residuals)
- Pilot facility under construction: 2.5 ha

Conoco Phillips

 \$5 million Research agreement with Colorado Center for Biorefining and Biofuels on conversion of algae into renewable fuels

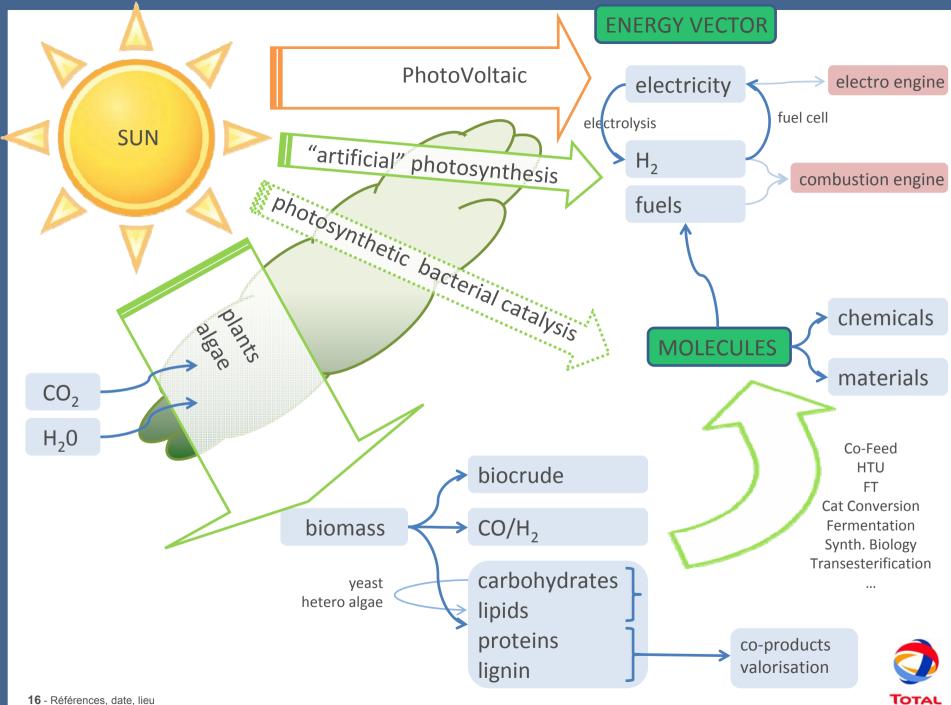
Integration into industrial units for CO2 valorization:

- <u>ENI</u>
 - At the origin of the International Network on Biofixation and Greenhouse Gas Abatement with Microalgae (since 2000)
 - Operating small scale pilot plants using both open pond and confined photobioreactor technology at Gela Refinery (Italy)
 - Preparing a larger scale demonstration project (2000 m² open ponds – 150 m² PBR)

CO₂ Biofixation And Vegetable Oil Production From Microalgae

Main	Chal	lenges
------	------	--------

Reduce cost


Improve energy balance

Demonstrate robust large scale operation over longer time

Research & Development challenges

- Obtain and/or develop <u>algae strains</u> that allow robust production over longer time periods in a selected process and environment, yielding biomass with optimal composition for the targeted business model. (selection – genetic modification...)
- Overcome limiting factors to achieve higher <u>concentrations</u> and <u>productivities</u> (strain selection process design and control optimal interaction of light with biological system modeling...)
- Control and master process conditions to assure <u>robust production</u> over longer periods of time (strain selection – sanitation protocols – management of ecosystems – closed systems ...)
- Improve tolerance to variations in <u>composition and quality of entrants</u> (CO2 water quality nutrient sources...)
- Develop low-cost <u>harvesting and extraction</u> processes (ultra-filtration membrane technology solvent extraction cyclones...)
- Integrate valorizing processes (waste water treatment valorization of co-products ...)
- Advance the <u>engineering</u> of large scale production systems (materials for photobioreactors optical fibers optimal light capture and transfer avoid reactor fouling ...)

